Code Templates For Technical Interview
In this journal, I aim to compile code templates as a foundational resource to ready myself for technical interviews. These templates are sourced from the LeetCode Explore Cards. The goal is to have these templates serve as a quick reference during interviews, enabling me to devise efficient implementations swiftly. This journal functions as my personal cheatsheet for technical interview preparation.
Two pointers: one input, opposite ends
def fn(arr):
    left = ans = 0
    right = len(arr) - 1
    while left < right:
        ## do some logic here with left and right
        if CONDITION:
            left += 1
        else:
            right -= 1
    
    return ans
Two pointers: two inputs, exhaust both
def fn(arr1, arr2):
    i = j = ans = 0
    while i < len(arr1) and j < len(arr2):
        ## do some logic here
        if CONDITION:
            i += 1
        else:
            j += 1
    
    while i < len(arr1):
        ## do logic
        i += 1
    
    while j < len(arr2):
        ## do logic
        j += 1
    
    return ans
Sliding window
def fn(arr):
    left = ans = curr = 0
    for right in range(len(arr)):
        ## do logic here to add arr[right] to curr
        while WINDOW_CONDITION_BROKEN:
            ## remove arr[left] from curr
            left += 1
        ## update ans
    
    return ans
Build a prefix sum
def fn(arr):
    prefix = [arr[0]]
    for i in range(1, len(arr)):
        prefix.append(prefix[-1] + arr[i])
    
    return prefix
Efficient string building
## arr is a list of characters
def fn(arr):
    ans = []
    for c in arr:
        ans.append(c)
    
    return "".join(ans)
Linked list: fast and slow pointer
def fn(head):
    slow = head
    fast = head
    ans = 0
    while fast and fast.next:
        ## do logic
        slow = slow.next
        fast = fast.next.next
    
    return ans
Reversing a linked list
def fn(head):
    curr = head
    prev = None
    while curr:
        next_node = curr.next
        curr.next = prev
        prev = curr
        curr = next_node 
        
    return prev
Find number of subarrays that fit an exact criteria
from collections import defaultdict
def fn(arr, k):
    counts = defaultdict(int)
    counts[0] = 1
    ans = curr = 0
    for num in arr:
        ## do logic to change curr
        ans += counts[curr - k]
        counts[curr] += 1
    
    return ans
Monotonic increasing stack
def fn(arr):
    stack = []
    ans = 0
    for num in arr:
        ## for monotonic decreasing, just flip the > to <
        while stack and stack[-1] > num:
            ## do logic
            stack.pop()
        stack.append(num)
    
    return ans
Binary tree: DFS (recursive)
def dfs(root):
    if not root:
        return
    
    ans = 0
    ## do logic
    dfs(root.left)
    dfs(root.right)
    return ans
Binary tree: DFS (iterative)
def dfs(root):
    stack = [root]
    ans = 0
    while stack:
        node = stack.pop()
        ## do logic
        if node.left:
            stack.append(node.left)
        if node.right:
            stack.append(node.right)
    return ans
Binary tree: BFS
from collections import deque
def fn(root):
    queue = deque([root])
    ans = 0
    while queue:
        current_length = len(queue)
        ## do logic for current level
        for _ in range(current_length):
            node = queue.popleft()
            ## do logic
            if node.left:
                queue.append(node.left)
            if node.right:
                queue.append(node.right)
    return ans
Graph: DFS (recursive)
For the graph templates, assume the nodes are numbered from 0 to n - 1 and the graph is given as an adjacency list. Depending on the problem, you may need to convert the input into an equivalent adjacency list before using the templates.
def fn(graph):
    def dfs(node):
        ans = 0
        ## do some logic
        for neighbor in graph[node]:
            if neighbor not in seen:
                seen.add(neighbor)
                ans += dfs(neighbor)
        
        return ans
    seen = {START_NODE}
    return dfs(START_NODE)
Graph: DFS (iterative)
def fn(graph):
    stack = [START_NODE]
    seen = {START_NODE}
    ans = 0
    while stack:
        node = stack.pop()
        ## do some logic
        for neighbor in graph[node]:
            if neighbor not in seen:
                seen.add(neighbor)
                stack.append(neighbor)
    
    return ans
Graph: BFS
from collections import deque
def fn(graph):
    queue = deque([START_NODE])
    seen = {START_NODE}
    ans = 0
    while queue:
        node = queue.popleft()
        ## do some logic
        for neighbor in graph[node]:
            if neighbor not in seen:
                seen.add(neighbor)
                queue.append(neighbor)
    
    return ans
Find top k elements with heap
import heapq
def fn(arr, k):
    heap = []
    for num in arr:
        ## do some logic to push onto heap according to problem's criteria
        heapq.heappush(heap, (CRITERIA, num))
        if len(heap) > k:
            heapq.heappop(heap)
    
    return [num for num in heap]
Binary search
def fn(arr, target):
    left = 0
    right = len(arr) - 1
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            ## do something
            return
        if arr[mid] > target:
            right = mid - 1
        else:
            left = mid + 1
    
    ## left is the insertion point
    return left
Binary search: duplicate elements, left-most insertion point
def fn(arr, target):
    left = 0
    right = len(arr)
    while left < right:
        mid = (left + right) // 2
        if arr[mid] >= target:
            right = mid
        else:
            left = mid + 1
    return left
Binary search: duplicate elements, right-most insertion point
def fn(arr, target):
    left = 0
    right = len(arr)
    while left < right:
        mid = (left + right) // 2
        if arr[mid] > target:
            right = mid
        else:
            left = mid + 1
    return left
Binary search: for greedy problems
If looking for a minimum:
def fn(arr):
    def check(x):
        ## this function is implemented depending on the problem
        return BOOLEAN
    left = MINIMUM_POSSIBLE_ANSWER
    right = MAXIMUM_POSSIBLE_ANSWER
    while left <= right:
        mid = (left + right) // 2
        if check(mid):
            right = mid - 1
        else:
            left = mid + 1
    
    return left
If looking for a maximum:
def fn(arr):
    def check(x):
        ## this function is implemented depending on the problem
        return BOOLEAN
    left = MINIMUM_POSSIBLE_ANSWER
    right = MAXIMUM_POSSIBLE_ANSWER
    while left <= right:
        mid = (left + right) // 2
        if check(mid):
            left = mid + 1
        else:
            right = mid - 1
    
    return right
Backtracking
def backtrack(curr, OTHER_ARGUMENTS...):
    if (BASE_CASE):
        ## modify the answer
        return
    
    ans = 0
    for (ITERATE_OVER_INPUT):
        ## modify the current state
        ans += backtrack(curr, OTHER_ARGUMENTS...)
        ## undo the modification of the current state
    
    return ans
Dynamic programming: top-down memoization
def fn(arr):
    def dp(STATE):
        if BASE_CASE:
            return 0
        
        if STATE in memo:
            return memo[STATE]
        
        ans = RECURRENCE_RELATION(STATE)
        memo[STATE] = ans
        return ans
    memo = {}
    return dp(STATE_FOR_WHOLE_INPUT)
Build a trie
## note: using a class is only necessary if you want to store data at each node.
## otherwise, you can implement a trie using only hash maps.
class TrieNode:
    def __init__(self):
        ## you can store data at nodes if you wish
        self.data = None
        self.children = {}
def fn(words):
    root = TrieNode()
    for word in words:
        curr = root
        for c in word:
            if c not in curr.children:
                curr.children[c] = TrieNode()
            curr = curr.children[c]
        ## at this point, you have a full word at curr
        ## you can perform more logic here to give curr an attribute if you want
    
    return root