Problem of The Day: LRU Cache
Problem Statement
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
int get(int key) Return the value of the key if the key exists, otherwise return -1.
void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.
The functions get and put must each run in O(1) average time complexity.
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 3000
0 <= key <= 10^4
0 <= value <= 10^5
At most 2 * 105 calls will be made to get and put.
Intuition
I decided to implement an LRUCache (Least Recently Used Cache) using an OrderedDict
to efficiently manage the order of items based on their usage. This approach allows quick retrieval and removal of the least recently used items when the cache reaches its capacity.
Approach
I utilized the OrderedDict
from the Python collections
module to maintain the order of key-value pairs based on their usage. The get method checks if a key is present in the cache and updates its position to indicate recent usage. The put method inserts or updates a key-value pair and removes the least recently used item if the cache exceeds its capacity.
Complexity
- Time complexity:
- get operation: O(1) - Retrieving a key from an OrderedDict has constant time complexity.
- put operation: O(1) - Inserting or updating a key in an OrderedDict also has constant time complexity.
- Space complexity: O(n) - The space complexity is determined by the capacity of the cache, as it directly influences the size of the OrderedDict.
Code
class LRUCache:
def __init__(self, capacity: int):
self.hash_map = OrderedDict()
self.capacity = capacity
def get(self, key: int) -> int:
if key not in self.hash_map:
return -1
val = self.hash_map[key]
del self.hash_map[key]
self.hash_map[key] = val
return val
def put(self, key: int, value: int) -> None:
if key in self.hash_map:
del self.hash_map[key]
self.hash_map[key] = value
if len(self.hash_map) > self.capacity:
self.hash_map.popitem(last=False)
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
Cleaner Code - Use move_to_end API from OrderedDict
from collections import OrderedDict
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.cache = OrderedDict()
def get(self, key: int) -> int:
if key in self.cache:
self.cache.move_to_end(key=key)
return self.cache[key]
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.cache.move_to_end(key=key)
self.cache[key] = value
if len(self.cache) > self.cap:
self.cache.popitem(last=False)
Editorial Solution
Use Doubly Linked List and Dictionary implementation
class DLinkedNode():
def __init__(self):
self.key = 0
self.value = 0
self.prev = None
self.next = None
class LRUCache():
def _add_node(self, node):
"""
Always add the new node right after head.
"""
node.prev = self.head
node.next = self.head.next
self.head.next.prev = node
self.head.next = node
def _remove_node(self, node):
"""
Remove an existing node from the linked list.
"""
prev = node.prev
new = node.next
prev.next = new
new.prev = prev
def _move_to_head(self, node):
"""
Move certain node in between to the head.
"""
self._remove_node(node)
self._add_node(node)
def _pop_tail(self):
"""
Pop the current tail.
"""
res = self.tail.prev
self._remove_node(res)
return res
def __init__(self, capacity):
"""
:type capacity: int
"""
self.cache = {}
self.size = 0
self.capacity = capacity
self.head, self.tail = DLinkedNode(), DLinkedNode()
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key):
"""
:type key: int
:rtype: int
"""
node = self.cache.get(key, None)
if not node:
return -1
# move the accessed node to the head;
self._move_to_head(node)
return node.value
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: void
"""
node = self.cache.get(key)
if not node:
newNode = DLinkedNode()
newNode.key = key
newNode.value = value
self.cache[key] = newNode
self._add_node(newNode)
self.size += 1
if self.size > self.capacity:
# pop the tail
tail = self._pop_tail()
del self.cache[tail.key]
self.size -= 1
else:
# update the value.
node.value = value
self._move_to_head(node)
- Time complexity: O(1)
- Space complexity: O(capacity)