Problem of The Day: LRU Cache
Problem Statement
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
int get(int key) Return the value of the key if the key exists, otherwise return -1.
void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.
The functions get and put must each run in O(1) average time complexity.
 
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1);    // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2);    // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1);    // return -1 (not found)
lRUCache.get(3);    // return 3
lRUCache.get(4);    // return 4
 
Constraints:
1 <= capacity <= 3000
0 <= key <= 10^4
0 <= value <= 10^5
At most 2 * 105 calls will be made to get and put.
Intuition
I decided to implement an LRUCache (Least Recently Used Cache) using an OrderedDict to efficiently manage the order of items based on their usage. This approach allows quick retrieval and removal of the least recently used items when the cache reaches its capacity.
Approach
I utilized the OrderedDict from the Python collections module to maintain the order of key-value pairs based on their usage. The get method checks if a key is present in the cache and updates its position to indicate recent usage. The put method inserts or updates a key-value pair and removes the least recently used item if the cache exceeds its capacity.
Complexity
- Time complexity:
    - get operation: O(1) - Retrieving a key from an OrderedDict has constant time complexity.
- put operation: O(1) - Inserting or updating a key in an OrderedDict also has constant time complexity.
 
- Space complexity: O(n) - The space complexity is determined by the capacity of the cache, as it directly influences the size of the OrderedDict.
Code
class LRUCache:
    def __init__(self, capacity: int):
        self.hash_map = OrderedDict()
        self.capacity = capacity
    def get(self, key: int) -> int:
        if key not in self.hash_map:
            return -1
        val = self.hash_map[key]
        del self.hash_map[key]
        self.hash_map[key] = val
        return val
        
    def put(self, key: int, value: int) -> None:
        if key in self.hash_map:
            del self.hash_map[key]
            
        self.hash_map[key] = value
        if len(self.hash_map) > self.capacity:
            self.hash_map.popitem(last=False)
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
Cleaner Code - Use move_to_end API from OrderedDict
from collections import OrderedDict
class LRUCache:
    def __init__(self, capacity: int):
        self.cap = capacity
        self.cache = OrderedDict()
    def get(self, key: int) -> int:
        if key in self.cache:
            self.cache.move_to_end(key=key)
            return self.cache[key]
        return -1
    def put(self, key: int, value: int) -> None:
        if key in self.cache:
            self.cache.move_to_end(key=key)
        self.cache[key] = value
        if len(self.cache) > self.cap:
            self.cache.popitem(last=False)
Editorial Solution
Use Doubly Linked List and Dictionary implementation
class DLinkedNode(): 
    def __init__(self):
        self.key = 0
        self.value = 0
        self.prev = None
        self.next = None
            
class LRUCache():
    def _add_node(self, node):
        """
        Always add the new node right after head.
        """
        node.prev = self.head
        node.next = self.head.next
        self.head.next.prev = node
        self.head.next = node
    def _remove_node(self, node):
        """
        Remove an existing node from the linked list.
        """
        prev = node.prev
        new = node.next
        prev.next = new
        new.prev = prev
    def _move_to_head(self, node):
        """
        Move certain node in between to the head.
        """
        self._remove_node(node)
        self._add_node(node)
    def _pop_tail(self):
        """
        Pop the current tail.
        """
        res = self.tail.prev
        self._remove_node(res)
        return res
    def __init__(self, capacity):
        """
        :type capacity: int
        """
        self.cache = {}
        self.size = 0
        self.capacity = capacity
        self.head, self.tail = DLinkedNode(), DLinkedNode()
        self.head.next = self.tail
        self.tail.prev = self.head
        
    def get(self, key):
        """
        :type key: int
        :rtype: int
        """
        node = self.cache.get(key, None)
        if not node:
            return -1
        # move the accessed node to the head;
        self._move_to_head(node)
        return node.value
    def put(self, key, value):
        """
        :type key: int
        :type value: int
        :rtype: void
        """
        node = self.cache.get(key)
        if not node: 
            newNode = DLinkedNode()
            newNode.key = key
            newNode.value = value
            self.cache[key] = newNode
            self._add_node(newNode)
            self.size += 1
            if self.size > self.capacity:
                # pop the tail
                tail = self._pop_tail()
                del self.cache[tail.key]
                self.size -= 1
        else:
            # update the value.
            node.value = value
            self._move_to_head(node)
- Time complexity: O(1)
- Space complexity: O(capacity)